
CvxLean
Modeling convex optimization problems in Lean

Ramon Fernández Mir

University of Edinburgh

January 12, 2024

1 / 21

Motivation

Convex optimization problems are ubiquitous in engineering,
industry, and finance. Some applications include
▶ safety and stability analysis of control systems
▶ power control
▶ portfolio optimization
▶ electronic circuit design

It is a generalization of linear programming that can be solved
efficiently using interior-point methods.

There is often a large gap between the original problem and the
problem eventually solved.

Lean can help bridge this gap more reliably than existing tools.

2 / 21

Convex optimization

Optimizing over x ∈ Rn with convex fis and affine his, a convex
optimization problem in standard form (high-level) is

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , k

hi(x) = 0, i = 1, . . . , l.

3 / 21

Convex optimization

Optimizing over x ∈ Rn with convex fis and affine his, a convex
optimization problem in standard form (high-level) is

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , k

hi(x) = 0, i = 1, . . . , l.

However, solvers want the problem in conic form (low-level)

minimize cTx
subject to Ax = b

x ∈ K,

where K is a convex cone e.g. Rn
+, Qn, Kexp, etc.

3 / 21

Disciplined convex programming

A framework to systematically reduce problems to conic form.

The framework consists of
▶ a library of base functions with known curvature and

monotonicity called atoms
▶ top-level, product-free, sign and composition rules (DCP form)
▶ optimization problems representing each atom called graph

implementations e.g. ex 7→ min{t | (x, 1, t) ∈ Kexp}

Key idea: replace expressions not in conic form with equivalent
optimization problems in conic form.

4 / 21

Convex optimization workflow

Standard
form

DCP
form

Conic
form

Numerical
result

Pre-DCP DCP Solver

Before our work:
▶ Pre-DCP transformations are done by hand.
▶ DCP transformations are done using a modeling framework

such as CVXPY, CVX, Convex.jl, etc.
▶ There are many conic solvers: MOSEK, Clarabel, ECOS,

Gurobi, SDPA, etc.

5 / 21

Issues

Issues:
▶ Pre-DCP transformations have no guarantees.
▶ DCP transformations are hard-coded and syntactic, and side

conditions are not checked in a principled way. They rely on
properties of the atoms that are assumed but not verified.

Solution: CvxLean, a framework that supports verified and
interactive pre-DCP and DCP transformations.

6 / 21

Issues

Issues:
▶ Pre-DCP transformations have no guarantees.
▶ DCP transformations are hard-coded and syntactic, and side

conditions are not checked in a principled way. They rely on
properties of the atoms that are assumed but not verified.

Solution: CvxLean, a framework that supports verified and
interactive pre-DCP and DCP transformations.

6 / 21

CvxLean overview

The type of minimization problems
structure Minimization where

objFun : D → R
constraints : D → Prop

The type of solutions
structure Solution (p : Minimization D R) where

point : D
feasibility : p.constraints point
optimality : ∀ y, p.constraints y → p.objFun point ≤ p.objFun y

7 / 21

CvxLean overview

A problem defined in CvxLean

def prob :=
optimization (x y : R)

minimize -sqrt (x - y)
subject to
c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

#check prob -- Minimization (R × R) R

8 / 21

Transformation to conic form

Standard
form

DCP
form

Conic
form

Numerical
result

Pre-DCP DCP Solver

Algorithm: check DCP rules and iteratively replace atom
applications with their graph implementations.

For example, we can replace √x − y by a new variable t and add
the constraint (x − y, 0.5, t) ∈ Q3

r , which holds iff t2 ≤ x − y.

The idea is that every eliminable atom includes proofs of key
properties that can be combined to prove the overall equivalence.

9 / 21

Atom declaration

The atom declaration for √
·, with its four key proof obligations.

declare_atom sqrt [concave] (x : R)+ : sqrt x :=
vconditions (cond : 0 ≤ x)
implementationVars (t : R)
implementationObjective (t)
implementationConstraints (c1 : rotatedSoCone x 0.5 ![t])
solution (t := Real.sqrt x)
solutionEqualsAtom by ...
-- ∀ a, 0 ≤ a → sqrt a = sqrt a
feasibility (c1 : by ...)
-- ∀ a, 0 ≤ a → rotatedSoCone a 0.5 ![sqrt a]
optimality by ...
-- ∀ v a a', a ≤ a' → rotatedSoCone a 0.5 ![v] → v ≤ sqrt a'
vconditionElimination (cond : by ...)
-- ∀ v a a', a ≤ a' → rotatedSoCone a 0.5 ![v] → 0 ≤ a'

10 / 21

Atom declaration

The atom declaration for √
·, with its four key proof obligations.

declare_atom sqrt [concave] (x : R)+ : sqrt x :=
vconditions (cond : 0 ≤ x)
implementationVars (t : R)
implementationObjective (t)
implementationConstraints (c1 : rotatedSoCone x 0.5 ![t])
solution (t := Real.sqrt x)
solutionEqualsAtom by ...
-- ∀ a, 0 ≤ a → sqrt a = sqrt a
feasibility (c1 : by ...)
-- ∀ a, 0 ≤ a → rotatedSoCone a 0.5 ![sqrt a]
optimality by ...
-- ∀ v a a', a ≤ a' → rotatedSoCone a 0.5 ![v] → v ≤ sqrt a'
vconditionElimination (cond : by ...)
-- ∀ v a a', a ≤ a' → rotatedSoCone a 0.5 ![v] → 0 ≤ a'

10 / 21

Example

The original problem
optimization (x y : R)

minimize -sqrt (x - y)
subject to
c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

is reduced to
optimization (x y t.0 t.1 : R)

minimize -t.0
subject to
c1' : zeroCone (2*x - 3 - y) -- 2*x - 3 - y = 0
c2' : posOrthCone (2 - t.1) -- 0 ≤ 2 - t.1
c4' : rotatedSoCone (x - y) 0.5 ![t.0] -- t.0^2 ≤ x - y
c5' : rotatedSoCone t.1 0.5 ![x] -- x^2 ≤ t.1

11 / 21

Example

The original problem
optimization (x y : R)

minimize -sqrt (x - y)
subject to
c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

is reduced to
optimization (x y t.0 t.1 : R)

minimize -t.0
subject to
c1' : zeroCone (2*x - 3 - y) -- 2*x - 3 - y = 0
c2' : posOrthCone (2 - t.1) -- 0 ≤ 2 - t.1
c4' : rotatedSoCone (x - y) 0.5 ![t.0] -- t.0^2 ≤ x - y
c5' : rotatedSoCone t.1 0.5 ![x] -- x^2 ≤ t.1

11 / 21

Example

The original problem
optimization (x y : R)

minimize -sqrt (x - y)
subject to
c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

is reduced to
optimization (x y t.0 t.1 : R)

minimize -t.0
subject to
c1' : zeroCone (2*x - 3 - y) -- 2*x - 3 - y = 0
c2' : posOrthCone (2 - t.1) -- 0 ≤ 2 - t.1
c4' : rotatedSoCone (x - y) 0.5 ![t.0] -- t.0^2 ≤ x - y
c5' : rotatedSoCone t.1 0.5 ![x] -- x^2 ≤ t.1

11 / 21

Example

The original problem
optimization (x y : R)

minimize -sqrt (x - y)
subject to
c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

is reduced to
optimization (x y t.0 t.1 : R)

minimize -t.0
subject to
c1' : zeroCone (2*x - 3 - y) -- 2*x - 3 - y = 0
c2' : posOrthCone (2 - t.1) -- 0 ≤ 2 - t.1
c4' : rotatedSoCone (x - y) 0.5 ![t.0] -- t.0^2 ≤ x - y
c5' : rotatedSoCone t.1 0.5 ![x] -- x^2 ≤ t.1

11 / 21

The solve command

solve prob

#print prob.reduced -- shows the reduced problem

#eval prob.status -- "PRIMAL_AND_DUAL_FEASIBLE"
#eval prob.value -- 2.101003
#eval prob.solution -- (-1.414214, -5.828427)

The solve command reduces the problem, sends it to MOSEK, and
reconstructs the point in the original domain.

12 / 21

New feature: multilevel atom declarations
The atom for the Huber loss function

h(x) :=
{

x2 if |x| ≤ 1
2x − 1 if |x| ≥ 1

is declared as follows:
declare_atom huber [convex] (x : R)? : huber x :=

vconditions
implementationVars (v : R) (w : R)
implementationObjective (2*v + w^2)
implementationConstraints
(c1 : |x| ≤ v + w)
(c2 : w ≤ 1)
(c3 : 0 ≤ v)

solution
(v := if |x| ≤ 1 then 0 else |x| - 1)
(w := if |x| ≤ 1 then |x| else 1)

...

13 / 21

New feature: multilevel atom declarations
The atom for the Huber loss function

h(x) :=
{

x2 if |x| ≤ 1
2x − 1 if |x| ≥ 1

is declared as follows:
declare_atom huber [convex] (x : R)? : huber x :=

vconditions
implementationVars (v : R) (w : R)
implementationObjective (2*v + w^2)
implementationConstraints
(c1 : |x| ≤ v + w)
(c2 : w ≤ 1)
(c3 : 0 ≤ v)

solution
(v := if |x| ≤ 1 then 0 else |x| - 1)
(w := if |x| ≤ 1 then |x| else 1)

...

13 / 21

New feature: automatic transformation to DCP form

Standard
form

DCP
form

Conic
form

Numerical
result

Pre-DCP DCP Solver

Take the following problem:
optimization (x : R)

minimize x
subject to
c1 : 1 / 1000 ≤ x
c2 : 1 / sqrt x ≤ exp x

It is not DCP because c2 is not of the form “convex” ≤ “concave”.
The equivalent constraint exp (-x) ≤ sqrt x is DCP.
We have support to rewrite it manually, but can we automate it?

14 / 21

E-graphs for optimization problems

An e-graph compactly represents a set of equivalent terms w.r.t.
some rewrite rules. Each rule application updates it by adding
nodes and merging equivalence classes.

They are useful when the rewriting system is complex, has no
normal forms, and there is no clear heuristic to guide the search.

We use egg, a high-performance e-graph library written in Rust.

We provide:
▶ A language to encode optimization problems.
▶ A list of (currently) 67 rewrite rules that we found useful.
▶ Support for conditional rewrites.
▶ Mechanisms to detect terms in DCP form.

15 / 21

Building an e-graph step by step
Initial e-graph representing 1/

√x ≤ ex.

16 / 21

Building an e-graph step by step
After rewriting 1/

√x ≤ ex into 1 ≤ ex√x.

16 / 21

Building an e-graph step by step
After rewriting ex√x into √xex.

16 / 21

Building an e-graph step by step
After rewriting 1 ≤

√xex into 1/ex ≤
√x.

16 / 21

Building an e-graph step by step
After rewriting 1/ex into e−x.

16 / 21

Extracting the “best” problem

The e-graph represents a set of equivalent optimization problems.

We can extract the term that minimizes some cost. In our case,
the cost is the curvature, calculated following the DCP rules. If
one of the problems is tagged as convex, then it is in DCP form,
and egg gives us the sequence of rewrites to get there, e.g.,

1√x ≤ ex ⇝ 1 ≤ ex√
x ⇝ 1 ≤

√
xex

· · · ⇝ 1
ex ≤

√
x ⇝ e−x ≤

√
x.

17 / 21

Replaying the proof in Lean

See https://github.com/opencompl/egg-tactic-code by
Andrés Goens and Siddharth Bhat.

Every rewrite rule corresponds to a lemma. For example, the first
step in the previous slide involves applying div_le_iff .
theorem div_le_iff (hb : 0 < b) : a / b ≤ c ↔ a ≤ c * b := ...

Note that it is a conditional rewrite. We keep track of the range of
each expression in egg using interval arithmetic, so it can detect
that 0 <

√x in our example.

In Lean, we do our best to discharge the side condition using
positivity and nlinarith (maybe by_approx in the future?).

18 / 21

https://github.com/opencompl/egg-tactic-code

Demo

19 / 21

More information about CvxLean

Alexander Bentkamp and Jeremy Avigad started the project and
wrote “Verified optimization” (FMM 21).

Bentkamp, Avigad, and I explain the proof-producing DCP
algorithm in “Verified reductions for optimization” (TACAS 23).

The code is publicly available at
https://github.com/verified-optimization/CvxLean.

20 / 21

https://arxiv.org/abs/2111.06807
https://arxiv.org/abs/2301.09347
https://github.com/verified-optimization/CvxLean

Conclusion and future steps

Standard
form

DCP
form

Conic
form

Numerical
result

Pre-DCP
≡

DCP
≡

Solver

Next steps:
1. Improve ergonomics.
2. Documentation and tutorials.
3. Formalize more examples, for instance, from

https://www.cvxpy.org/examples/index.html.

21 / 21

https://www.cvxpy.org/examples/index.html

