
Verified reductions for optimization

Alexander Bentkamp12, Ramon Fernández Mir3, Jeremy Avigad4

1Heinrich-Heine-Universität Düsseldorf, 2Chinese Academy of Sciences,
3University of Edinburgh, 4Carnegie Mellon University

April 26, 2023

1 / 19

Motivation

Convex optimization problems are ubiquitous in engineering,
industry and finance. Some applications include

▶ safety and stability analysis of control systems

▶ power control

▶ portfolio optimization

▶ electronic circuit design

▶ etc.

There is often a large gap between the original problem and the
problem sent to the solver.

Proof assistants can help with bridging this gap reliably.

2 / 19

Convex optimization

Optimizing over x ∈ Rn with convex fi s and affine hi s, a convex
optimization problem in standard form is

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . , k

hi (x) = 0, i = 1, . . . , l .

However, solvers want the problem in conic form:

minimize cT x

subject to Ax = b

x ∈ K ,

where K is a convex cone e.g. Rn
+, Qn, Kexp, etc.

3 / 19

Disciplined convex programming

A framework to systematically reduce problems to conic form.

Key idea: replace expressions that are not in conic form with
equivalent optimization problems in conic form.

The framework consists of

▶ a library of well-understood base functions called atoms

▶ optimization problems representing each atom called graph
implementations e.g. |x | 7→ min{t | x ≤ t ∧ −x ≤ t}

▶ infrastructure to keep track of curvature, monotonicity, etc.

4 / 19

Disciplined convex programming

The current setup:

Standard
form

DCP
form

Conic
form

MOSEK

ECOS

SDPA

. . .

Pre-DCP DCP

▶ Pre-DCP transformations are done by hand.

▶ DCP transformations are done using a modeling framework
such as CVXPY, CVX, Convex.jl, etc.

5 / 19

Problem description

Issues:
▶ Transformations are not rigorous.

▶ Pre-DCP transformations can introduce errors.
▶ DCP transformations are hard-coded and syntactic, and side

conditions are not checked in a principled way.
▶ DCP frameworks rely on properties of the atoms that are

assumed but not verified.

▶ Solvers cannot be fully trusted: interior-point methods are
inherently approximate, some problems are ill-conditioned, etc.

Solution: CvxLean, a modeling framework written in Lean.

6 / 19

Problem description

Issues:
▶ Transformations are not rigorous.

▶ Pre-DCP transformations can introduce errors.
▶ DCP transformations are hard-coded and syntactic, and side

conditions are not checked in a principled way.
▶ DCP frameworks rely on properties of the atoms that are

assumed but not verified.

▶ Solvers cannot be fully trusted: interior-point methods are
inherently approximate, some problems are ill-conditioned, etc.

Solution: CvxLean, a modeling framework written in Lean.

6 / 19

The Lean theorem prover

Lean 4 is a programming language and interactive theorem prover.
Some features relevant to this project:

▶ access to a formal mathematics library (mathlib) containing
∼45k definitions and ∼111k theorems

▶ the interactive view where users see how the problem changes
at every step

▶ extensible syntax to express problems in a natural way and
create custom commands

▶ metaprogramming support to conveniently manipulate
expressions and build tactics

7 / 19

CvxLean overview

The type of minimization problems

structure Minimization (D R : Type) :=

(objFun : D → R)

(constraints : D → Prop)

The type of solutions

structure Solution {D R : Type} [Preorder R] (p : Minimization D R) :=

(point : D)

(feasibility : p.constraints point)

(optimality : ∀ y : FeasPoint p, p.objFun point ≤ p.objFun y.point)

8 / 19

CvxLean overview

A problem in CvxLean is defined as follows:

def prob :=

optimization (x y : R)
minimize -sqrt (x - y)

subject to

c1 : y = 2*x - 3

c2 : x^2 ≤ 2

c3 : 0 ≤ x - y

#check prob -- Minimization (Real × Real) Real

9 / 19

Reduction to conic form

First, traverse the objective function and the constraints and build
expression trees from our library of atoms satisfying

▶ curvature constraints e.g. the objective function is convex

▶ variable conditions e.g. the argument of
√
· is non-negative

neg
(affine, in the role of convex)

sqrt
(concave)

sub
(affine, in the role of concave)

x

increasing

y

decreasing

increasing

decreasing

10 / 19

Reduction to conic form

Next, iteratively replace atom applications by their graph
implementations.

For example, we can replace a subexpression
√
x − y by a new

variable t and add the constraint t2 ≤ x − y .

optimization (x y t.0 t.1 : R)
minimize -t.0

subject to

c1’ : zeroCone (2*x - 3 - y) -- 2*x - 3 - y = 0

c2’ : posOrthCone (2 - t.1) -- 2 - t.1 ≥ 0

c4’ : rotatedSoCone (x - y) 0.5 ![t.0] -- x - y ≥ t.0^2

c5’ : rotatedSoCone t.1 0.5 ![x] -- t.1 ≥ x^2

11 / 19

Verifying the reduction

Problems P and Q are strongly equivalent if we have

P
min{f (x) | ...}

Q
min{g(y) | ...}

φ

ψ

▶ x feasible in P ⇒ φ(x) feasible in Q and g(φ(x)) ≤ f (x)

▶ y feasible in Q ⇒ ψ(y) feasible in P and f (ψ(y)) ≤ g(y)

This guarantees that φ and ψ map the solutions. It is enough to
capture all the transformations used in CVXPY, for instance.

12 / 19

Verifying the reduction

CvxLean builds (φ, ψ) so problems before and after each reduction
step are strongly equivalent.

The idea is that every eliminable atom includes proofs of key
properties that can be combined to prove the overall equivalence.

Following the example of sqrt, we need to prove

▶ solution correctness: ∀ a, 0 ≤ a → sqrt a = sqrt a

▶ solution feasibility: ∀ a, 0 ≤ a → (sqrt a)^2 ≤ a

▶ optimality: ∀ v a a’, a ≤ a’ → v^2 ≤ a → v ≤ sqrt a’

▶ condition elimination: ∀ v a a’, a ≤ a’ → v^2 ≤ a → 0 ≤ a’

13 / 19

Adding atoms

The declaration of the atom sqrt looks as follows:

declare_atom sqrt [concave] (x : R)+ : sqrt x :=

vconditions (cond : 0 ≤ x)

implementationVars (t : R)
implementationObjective (t)

implementationConstraints (c1 : rotatedSoCone x 0.5 ![t])

solution (t := Real.sqrt x)

solutionEqualsAtom by . . .

feasibility (c1 : by . . .)

optimality by . . .

vconditionElimination (cond : by . . .)

The ellipses are filled by the formal proofs of the four conditions.

14 / 19

More complex atoms

Provided that A ⪰ 0, the graph implementation of the log(det(A))
is the following optimization problem over t ∈ Rn and Y ∈ Rn×n:

maximize
∑
i

ti

subject to (t, 1, y) ∈ Kn
exp(

D Z
ZT A

)
⪰ 0,

where yi = Yii , D = Diag(Y) and Z = UpperTriangular(Y).

The proofs of this atom required some extra work such as results
about LDL decompositions and Schur complements.

This was crucial to verify the reduction for covariance estimation
for Gaussian variables.

15 / 19

The solve command

solve prob

#print prob.reduced -- shows the reduced problem

#eval prob.status -- "PRIMAL_AND_DUAL_FEASIBLE"

#eval prob.value -- 2.101003

#eval prob.solution -- (-1.414214, -5.828427)

The solve command reduces the problem, sends it to MOSEK,
and reconstructs the point in the original domain.

16 / 19

User-defined reductions

CvxLean CVXPY

def prob2 :
optimization (x y : R)
maximize x + y

subject to

h : (exp x) * (exp y) ≤ 10

solve prob2

x = cp.Variable(1)
y = cp.Variable(1)

objFun = cp.Maximize(x + y)
constr = [cp.exp(x) * cp.exp(y) <= 10]

prob2 = cp.Problem(objFun, constr)
prob2.solve()

Both fail because the constraint is not DCP...

But, clearly, we just need to note that exey = ex+y .

17 / 19

User-defined reductions

CvxLean CVXPY

reduction red/prob2 :
optimization (x y : R)
maximize x + y

subject to

h : (exp x) * (exp y) ≤ 10 := by

conv_constr =>
rw [←Real.exp_add]

solve prob2

−− (2.302585, 0.000000)

x = cp.Variable(1)
y = cp.Variable(1)

objFun = cp.Maximize(x + y)
−− next line edited by hand
constr = [cp.exp(x + y) <= 10]

prob2 = cp.Problem(objFun, constr)
prob2.solve()
−− [2.30258509] [0.]

With the reduction command, you can transform the problem
using lemmas and tactics from mathlib. In this case:

theorem exp_add : exp (x + y) = exp x * exp y := by . . .

18 / 19

Conclusion and future steps

1. Encode more and more practical examples.

2. Go beyond DCP, for instance, be able to support geometric or
quasiconvex programming.

3. Work on automation to discharge side conditions.

4. Generate proofs of rigorous bounds.

The code is publicly available at
https://github.com/verified-optimization/CvxLean.

19 / 19

https://github.com/verified-optimization/CvxLean

