
ML-based premise selection for Lean

Ramon Fernández Mir

School of Informatics
University of Edinburgh

ramon.fernandezmir@ed.ac.uk

10th March 2023

Problem description

example : 2^(n + 1) * m = 2 * 2^n * m := by {

-- What now ?

}

We just need to use the theorem that says that 2n+1 = 2 · 2n
(pow succ).

Or, even better, have the system prove it automatically.

Issues:

▶ mathlib has over 100k theorems.

▶ There are ways to search but they are very strict.

Solution

Turn this problem into a machine learning task where:

▶ Input: the theorem statement (featurized).

▶ Output: list of premises that appear in the proof.

Design principles:

1. Tight integration with the proof assistant.

2. Easy to use and install.

3. Lightweight and fast.

Data extraction, training and prediction all happen in Lean.

Features

theorem le_of_pred_lt {m n : N} : pred m < n → m ≤ n := . . .

These are well-defined expressions, so we consider their syntax tree:

Hypotheses Conclusion

LT.lt (<)

npred

m

instLTNatNat

LE.le (≤)

nminstLENatNat

▶ Names: T:LE.le T:instLENat T:Nat H:Nat H:LT.lt H:instLTNat . . .

▶ Bigrams: T:LE.le/instLENat T:LE.le/Nat H:LT.lt/Nat . . .

▶ Trigrams: T:LE.le/Nat/instLENat H:LT.lt/Nat/instLTNat . . .

Relevant premises

The proof is also an expression so, in principle, we could just
traverse it and keep track of all the premises found.

However, this results in a large number of simple facts and
autogenerated lemmas...

We apply three filters1:

▶ All (42k): remove premises automatically generated by Lean.

▶ Math (40k): remove premises from the core library, e.g. rfl.

▶ Source (21k): only keep lemmas explicitly written in the proof.

match m with

| 0 => le_of_lt

| m + 1 => id

1In brackets: number of theorems with non-empty premise lists after filtering

Relevant premises

The proof is also an expression so, in principle, we could just
traverse it and keep track of all the premises found.

However, this results in a large number of simple facts and
autogenerated lemmas...

We apply three filters1:

▶ All (42k): remove premises automatically generated by Lean.

▶ Math (40k): remove premises from the core library, e.g. rfl.

▶ Source (21k): only keep lemmas explicitly written in the proof.

match m with

| 0 => le_of_lt

| m + 1 => id

1In brackets: number of theorems with non-empty premise lists after filtering

Random forest

Key idea: many (uncorrelated) decision trees + voting.

Our decision trees:

▶ Leaves hold a list of premises and a list of examples.

▶ Nodes consist of a simple rule checking if a feature appears.

▶ The output is a ranking of premises.

. . .

Tree 1 Tree 2 Tree n

[p1, p4, p5] [p1, p2, p3] [p1, p3, p4, p5]

[(p1, 3), (p3, 2), (p4, 2), (p5, 2), (p2, 1), ...]

Random forest

A key difference with the usual approach is that we train it in an
online fashion, i.e. we update the model one example at a time. It
makes it easy to update the model as new theorems are proved.

The steps to add an example e to a tree are:

1. Follow the binary rules down to a leaf L.

2. Let L = L ∪ {e}. If split(L), continue, else stop.

3. Select N features by successively taking random pairs of
examples in L and picking a feature in their difference set.

4. The new rule f is the feature maximizing “information gain”.

5. Split L based on f into L1 and L2 and let L = (f , L1, L2).

Evaluation and results

Split training and test sets based on mathlib modules:

▶ Test (592): Modules that are not dependencies.

▶ Training (2436): The rest of the modules.

Assume a theorem T depends on a set P of n premises. We
measure the quality of a ranking R as follows:

Cover(T) :=
|P ∩ {R[0], . . . ,R[n − 1]}|

n

We also consider taking n + 10 premises from R instead of n.

Evaluation and results

Average cover for our model with different filters and features:

n n+b n+b+t

All 0.56 (0.67) 0.57 (0.67) 0.47 (0.58)

Source 0.28 (0.36) 0.29 (0.36) 0.28 (0.36)

Math 0.25 (0.32) 0.26 (0.33) 0.16 (0.24)

Observations:
▶ More strict filters make the learning task harder.

▶ Fewer data points.
▶ It is “easy” to predict very common premises.

▶ Trigrams caused over-fitting.

Demo

Project summary

Co-authors:

▶ Bartosz Piotrowski (University of Warsaw)

▶ Edward Ayers (Carnegie Mellon University)

The code is publicly available at:
https://github.com/BartoszPiotrowski/lean-premise-selection

Future work:

1. Better features exploiting the structure of expressions.

2. Use our ML advisor to guide automated reasoning tools.

3. Can a more sophisticated model get better results?

https://github.com/BartoszPiotrowski/lean-premise-selection

Related projects

Tactician (2021)

▶ Tactic selection for Coq.

▶ Tutorial: https://coq-tactician.github.io/.

Thor (2022)

▶ Premise selection using a language model.

▶ Works with automated theorem provers (hammers).

I also recommend Jason Rute’s recent talk “Deep learning in
interactive theorem proving” for more projects in this direction:
https://www.youtube.com/watch?v=P5ew0BrRm_I

https://coq-tactician.github.io/
https://www.youtube.com/watch?v=P5ew0BrRm_I

Thank you

