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Problem description

example : 2^(n + 1) * m = 2 * 2^n * m := by {

-- What now ?

}

We just need to use the theorem that says that 2n+1 = 2 · 2n
(pow succ).

Or, even better, have the system prove it automatically.

Issues:

▶ mathlib has over 100k theorems.

▶ There are ways to search but they are very strict.



Solution

Turn this problem into a machine learning task where:

▶ Input: the theorem statement (featurized).

▶ Output: list of premises that appear in the proof.

Design principles:

1. Tight integration with the proof assistant.

2. Easy to use and install.

3. Lightweight and fast.

Data extraction, training and prediction all happen in Lean.



Features

theorem le_of_pred_lt {m n : N} : pred m < n → m ≤ n := . . .

These are well-defined expressions, so we consider their syntax tree:

Hypotheses Conclusion

LT.lt (<)

npred

m

instLTNatNat

LE.le (≤)

nminstLENatNat

▶ Names: T:LE.le T:instLENat T:Nat H:Nat H:LT.lt H:instLTNat . . .

▶ Bigrams: T:LE.le/instLENat T:LE.le/Nat H:LT.lt/Nat . . .

▶ Trigrams: T:LE.le/Nat/instLENat H:LT.lt/Nat/instLTNat . . .



Relevant premises

The proof is also an expression so, in principle, we could just
traverse it and keep track of all the premises found.

However, this results in a large number of simple facts and
autogenerated lemmas...

We apply three filters1:

▶ All (42k): remove premises automatically generated by Lean.

▶ Math (40k): remove premises from the core library, e.g. rfl.

▶ Source (21k): only keep lemmas explicitly written in the proof.

match m with

| 0 => le_of_lt

| m + 1 => id

1In brackets: number of theorems with non-empty premise lists after filtering
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Random forest

Key idea: many (uncorrelated) decision trees + voting.

Our decision trees:

▶ Leaves hold a list of premises and a list of examples.

▶ Nodes consist of a simple rule checking if a feature appears.

▶ The output is a ranking of premises.

. . .

Tree 1 Tree 2 Tree n

[p1, p4, p5] [p1, p2, p3] [p1, p3, p4, p5]

[(p1, 3), (p3, 2), (p4, 2), (p5, 2), (p2, 1), ...]



Random forest

A key difference with the usual approach is that we train it in an
online fashion, i.e. we update the model one example at a time. It
makes it easy to update the model as new theorems are proved.

The steps to add an example e to a tree are:

1. Follow the binary rules down to a leaf L.

2. Let L = L ∪ {e}. If split(L), continue, else stop.

3. Select N features by successively taking random pairs of
examples in L and picking a feature in their difference set.

4. The new rule f is the feature maximizing “information gain”.

5. Split L based on f into L1 and L2 and let L = (f , L1, L2).



Evaluation and results

Split training and test sets based on mathlib modules:

▶ Test (592): Modules that are not dependencies.

▶ Training (2436): The rest of the modules.

Assume a theorem T depends on a set P of n premises. We
measure the quality of a ranking R as follows:

Cover(T ) :=
|P ∩ {R[0], . . . ,R[n − 1]}|

n

We also consider taking n + 10 premises from R instead of n.



Evaluation and results

Average cover for our model with different filters and features:

n n+b n+b+t

All 0.56 (0.67) 0.57 (0.67) 0.47 (0.58)

Source 0.28 (0.36) 0.29 (0.36) 0.28 (0.36)

Math 0.25 (0.32) 0.26 (0.33) 0.16 (0.24)

Observations:
▶ More strict filters make the learning task harder.

▶ Fewer data points.
▶ It is “easy” to predict very common premises.

▶ Trigrams caused over-fitting.



Demo



Project summary

Co-authors:

▶ Bartosz Piotrowski (University of Warsaw)

▶ Edward Ayers (Carnegie Mellon University)

The code is publicly available at:
https://github.com/BartoszPiotrowski/lean-premise-selection

Future work:

1. Better features exploiting the structure of expressions.

2. Use our ML advisor to guide automated reasoning tools.

3. Can a more sophisticated model get better results?

https://github.com/BartoszPiotrowski/lean-premise-selection


Related projects

Tactician (2021)

▶ Tactic selection for Coq.

▶ Tutorial: https://coq-tactician.github.io/.

Thor (2022)

▶ Premise selection using a language model.

▶ Works with automated theorem provers (hammers).

I also recommend Jason Rute’s recent talk “Deep learning in
interactive theorem proving” for more projects in this direction:
https://www.youtube.com/watch?v=P5ew0BrRm_I

https://coq-tactician.github.io/
https://www.youtube.com/watch?v=P5ew0BrRm_I


Thank you


