
Verified Convex Optimisation for Hybrid Systems

Ramon Fernández Mir

School of Informatics
University of Edinburgh

September 2022

Initial questions

Why do we care about hybrid systems?
They model safety-critical systems such as self-driving cars.

How can an interactive theorem prover help?
It’s a convenient framework to formalise them and reason about
their properties.

What is the role of convex optimisation?
Many properties can be reduced to convex optimisation queries
and solved efficiently.

Convex optimisation

Optimising over x ∈ Rn and with convex fi s and affine hi s, a
convex optimisation problem in standard form is:

minimise f0(x)

subject to fi (x) ≤ 0, i = 1, . . . , k

hi (x) = 0, i = 1, . . . , l .

However, solvers do not understand it! They usually want the
problem in conic form:

minimise cT y

subject to Giy − hi ∈ Ki , i = 1, . . . ,m;

where the Ki s are convex cones.

Disciplined convex programming

A system to transform problems to conic form consisting of:

▶ A library of well-understood base functions called atoms.

▶ Optimisation problems representing each atom called graph
implementations e.g. |x | 7→ min{t | x ≤ t ∧ −x ≤ t}.

▶ Infrastructure to keep track of curvature, monotonicity, etc.

The current set-up:

Standard DCP Conic
Pre-DCP DCP

▶ Pre-DCP transformations are done by hand (errors!).

▶ DCP transformations are done using a modelling framework
such as CVXPY, CVX, Convex.jl, etc.

Problem description

More issues:

▶ No correctness assurance when adding new atoms.

▶ Solvers cannot be trusted: interior-point methods are
inherently approximate, some problems are ill-conditioned, etc.

We would like a tool with the following requirements:

▶ High degree of trust in the solution.

▶ Potential of extending it without breaking it.

▶ Access to a large formal mathematics library.

Solution: CvxLean1. Essentially, CVXPY written in Lean.

1Joint work with Alexander Bentkamp and Jeremy Avigad.

CvxLean overview

noncomputable def prob (a : R) :=

optimization (x y : R)
maximize (log x) + (log y)

subject to

c1 : 0 < x

c2 : 0 < y

c3 : x + y ≤ a

#check prob 3 -- Minimization (Real × Real) Real

We use Lean 4’s macros system to define our own language for
optimisation problems.

Note: the constraints c1 and c2 will be needed to convince Lean
that we can solve it.

CvxLean overview

noncomputable def prob (a : R) :=

optimization (x y : R)
maximize (log x) + (log y)

subject to

c1 : 0 < x

c2 : 0 < y

c3 : x + y ≤ a

noncomputable def sol : Solution (prob 3) := by

apply Solution.mk (point := ⟨1.5, 1.5⟩)
case feasibility => sorry

case optimality => sorry

We can solve the problem by providing a point, and proofs of
feasibility and optimality.

CvxLean overview

noncomputable def prob (a : R) :=

optimization (x y : R)
maximize (log x) + (log y)

subject to

c1 : 0 < x

c2 : 0 < y

c3 : x + y ≤ a

noncomputable def sol : Solution (prob 3) := by dcp

-- ⊢ Solution (

-- optimization (x y t.0 t.1 : Real)

-- maximize t.0 + t.1

-- subject to

-- _ : posOrthCone (3 - (x + y))

-- _ : expCone t.0 1 x

-- _ : expCone t.1 1 y

--)

CvxLean overview

noncomputable def prob (a : R) :=

optimization (x y : R)
maximize (log x) + (log y)

subject to

c1 : 0 < x

c2 : 0 < y

c3 : x + y ≤ a

solve prob 3

#print prob.reduced -- Same as before

#eval prob.status -- "PRIMAL_AND_DUAL_FEASIBLE"

#eval prob.solution -- (1.500000, 1.500000)

The solve command reduces the problem, sends it to MOSEK,
and reconstructs the point in the original domain (no proofs, yet).

Pre-DCP reductions

CvxLean CVXPY

noncomputable def prob2 :
optimization (x y : R)
maximize x + y

subject to

h : (exp x) * (exp y) ≤ 10

solve prob2

x, y = cp.Variable(1), cp.Variable(1)
objFun = cp.Maximize(x + y)
constr = [cp.exp(x) * cp.exp(y) <= 10]

prob2 = cp.Problem(objFun, constr)
prob2.solve(verbose=True)

Both fail because the constraint is not DCP...

But, clearly, we just need to note that exey = ex+y .

Pre-DCP reductions

CvxLean CVXPY

reduction red/prob2 :
optimization (x y : R)
maximize x + y

subject to

h : (exp x) * (exp y) ≤ 10 := by

conv_constr =>
rw [←Real.exp_add]

reduction

solve prob2

−− (2.302585, 0.000000)

x, y = cp.Variable(1), cp.Variable(1)
objFun = cp.Maximize(x + y)
constr = [cp.exp(x + y) <= 10]

prob2 = cp.Problem(objFun, constr)
prob2.solve(verbose=True)
−− [0.] [2.30258509]

With the reduce command, you can use lemmas from mathlib!

Note: we could even try to automate it.

More complex atoms

A symmetric real-valued matrix M is positive semidefinite (PSD) if
for all v , we have vTMv ≥ 0 and we write M ⪰ 0. The cone of
PSD matrices is convex.

Provided that A ⪰ 0, the implementation of the log(det(A)) is the
following optimisation problem over t ∈ Rn and Y ∈ Rn × Rn:

maximise
∑
i

ti

subject to (t, 1, y) ∈ E(
D Z
ZT A

)
⪰ 0.

Proving the correctness of this atom requires some extra work such
as the existence of an LDL decomosition and the theory of Schur
complements.

Proofs of ϵ-feasibility and ϵ-optimality

In general, we cannot prove exact feasiblity and optimality from
the result given by the solver.

But we can use it as starting point to give rigorous bounds. This
requires:

▶ Some results about floating point errors.

▶ Developing a theory of convex ϵ-duality.

▶ Proof generation infrastructure.

Remark: In the case of semidefinite programming and
sum-of-squares, there are a few tools that can generate proofs or
exact certificates (e.g. ValidSDP and RealCertify).

Sum-of-squares certificates

Write p = x2d + p2d−1x
2d−1 + · · ·+ p1x + p0. If we solve:

find Q

subject to pk =
∑

i+j=k

Qij

Q ⪰ 0,

we can conclude that p is nonnegative. Note that the affine
constrains are set up so that p = [x]Td Q[x]d where [x]d are the
monomials of degree ≤ d .

Encoding stability

We say that an autonomous system ẋ = f (x(t)) is Lyapunov
stable if for every equilibrium point xe , i.e. f (xe) = 0, we have
that for all ϵ > 0 there exists δ > 0 such that ∥x(0)− xe∥ < δ
implies that ∥x(t)− xe∥ < ϵ for all t ≥ 0.

It suffices to find a function V : Rn → R such that if, without loss,
xe = 0 is an equilibrium point, then:

▶ V (x) ≥ 0 and V (x) = 0 if, and only if, x = 0.

▶ ∇V · f (x) ≤ 0 for all x ̸= 0.

This fits nicely in CvxLean.

For instance, if f is polynomial, it can be handled as a
sum-of-squares problem.

Encoding safety

One way to certify safety of ẋ = f (x(t)) defined on some domain
X is to come up with a barrier certificate.

Suppose I ⊂ X is the set of initial states and U ⊂ X a set of
unsafe states. A barrier certificate is a differentiable function
B : X → R satisfying:

▶ B(x) ≤ 0 for all x ∈ I .

▶ B(x) > 0 for all x ∈ U.

▶ ∇B(x) · f (x) < 0 for all x ∈ X .

Again, this fits nicely in CvxLean, although for either case one
might need some pre-pre-DCP transformations...

Concluding remarks

Some challenges:

▶ Going back and forth between reals and floats.

▶ Working with mathport.

Next steps:

1. Package the framework and make it public (soon).

2. Work on automation to solve side conditions.

3. Generate proofs and rigorous bounds.

4. Encode interesting examples.

Thank you

